

Physics of the chromosphere and the lower coronal boundary conditions

Philip Judge HAO, NCAR, Boulder CO USA

PLATE X

FIG. 1.—SUN-SPOT AND HYDROGEN ($H\alpha$) FLOCCULI 1908, May 29, 4^h 26^m P. M. Scale: Sun's Diameter=0.3 Meter

The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation. An Equal Opportunity/Affirmative Action Employer.

December 2008

the chromosphere:

interface between photosphere and corona

- partially ionized: thermostat
- stratified: spans 9 pressure scale heights
- so it usually contains plasma $\beta=1$ surface
 - forced at the base
 - force-free at the top
- requires 30-100x as much power as the corona
- is the lower boundary for the corona
 - modulates flow of mass, momentum, energy and magnetic field into the corona
 - implicit mass reservoir in coronal loop scaling laws

Gold (1964)

- chromosphere occupies thick black line
- the electrodynamics of the chromosphere is critical to the supply of magnetic free energy into the corona.
- traditionally it is treated as in the figure

FIGURE 44-2. Magnetic field in a turbulent conducting medium. The fluid pressure is assumed large compared with magnetic forces below the dividing plane and small above it.

nlff field extrapolation (Schrijver et al 2008)

force free extrapolations from photospheric vector polarimetry. Photospheric boundary is *not* force-free...

DOT and TRACE 9 Jul 2005 (A.G. de Wijn, R. J. Rutten)

photosphere - forced

top of chromosphere, corona - force free

failure to trace magnetic field lines through the solar atmosphere

lower corona

- high plasma conductivity ulletallows tracing of field lines using
 - photospheric observations (polarimetry, proxies)
 - coronal threads
- TRACE & other missions failed to do this
- why?- chromosphere

ARCSECONDS

De Pontieu et al. 1999 "moss"

magnetic interface observations: an example

Small AR, pores

Chromosphere as seen with IBIS

- Ca II 854.2 nm
- samples many pressure scale heights
- high resolution
 - resolution ≈ 0.3 " (DST limit 0.24")
 - (FOV 40"×40")

base of corona is very different from photosphere

G. Cauzzi et al 2008, A+A

Small AR, pores: including the chromosphere

detailed study of IBIS data: G. Cauzzi et al 2008, A+A

Differences between potential and constant α photospheric fields

- IBIS morphology⇒ transverse fields differ by ~20-60G
- Hinode photospheric 630.2 sensitivity *B_T*(app) Lites et al (2008) ApJ 672, 1237
 40 Mx cm⁻² px⁻¹ (normal map)
 - current instruments can be used
 to study the forced → force-free
 transition
 - chromospheric electrodynamics

Note: twist/ electrical currents can be easier to detect in the chromosphere!

- IBIS fibrils reveal a clear $B_{\varphi} \Rightarrow j_z$
- also Hinode rotating spicules
- Parker (1974): B_{φ}/B_z increases with z

DYNAMICAL PROPERTIES OF MAGNETIC FIELD

magnetic interface physical considerations

chromosphere as a partially ionized plasma

- partial ionizⁿ \Rightarrow 3-fluid *frictional dissipation, heating*
- efficient damping by ion-neutral collisions
- Kinetic theory (Braginskii 1965)

 $- Q_{fr} = \mathbf{j} \cdot \mathbf{E} = \mathbf{j}^2 / \mathbf{\sigma} + (\xi_n \mathbf{j} \times \mathbf{B} - \mathbf{G})^2 / \alpha_{n,} \qquad \mathbf{G} = \xi_n \nabla p - \nabla p_n$

- "ambipolar diffusion"/star formation (1950s Schlüter, Cowling)
- $\mathbf{G} = \mathbf{0} \Rightarrow$ "Cowling conductivity" σ_{\perp}^*
 - $-Q_{\mathrm{fr}} = j_{\mathrm{II}}^{2}/\sigma + j_{\perp}^{2}/\sigma_{\perp}^{*} \qquad \sigma/\sigma_{\perp}^{*} = 1 + 2 \xi_{\mathrm{n}} \omega_{\mathrm{e}} \tau_{\mathrm{e}} \omega_{\mathrm{i}} \tau_{\mathrm{i}} \qquad >>1$
 - $\rightarrow rapid dissipation of \mathbf{j}_{\perp}$
 - Goodman & colleagues:
 - Arber & colleagues:

wave heating

flux emergence

Chromospheric dissipation of $j \bot$

- Braginskii (1965): certain motions (G...) dissipate j_{\perp}
 - Alfvén, fast modes, dynamic situations where $\nabla p \rho g + j \times B \neq 0$
- Not slow modes, slow
 dynamics (cf. Goodman 2000) -
- So, at coronal lower boundary, chromosphere makes:
 - j⊥~0; j×B~0
 - weaker Alfvén/fast modes

Flux emergence: Arber, Haynes & Leake (2007) based upon Cowling's conductivity (**G=0**):

Plot of the magnitude of j_{\perp} as a function of height along the line x=y=0 for all three resistivity models at t=160 .

emergence process

chromosphere as a partially ionized plasma II

- σ_{\perp}^* is some steps removed from σ (kinetic theory)
 - case $\mathbf{G} \neq \mathbf{0}$: σ_{\perp}^* incorrect!
 - one must consistently determine the nature of \mathbf{j}_{\perp} (cf. E-region electrojet) from the dynamics
- Fontenla (2005, 2008 A+A)
 - for length scales >100 km (few mHz waves),
 - $-Q_{fr} = \mathbf{j}.\mathbf{E}$ too small, invokes instability (Farley-Buneman)
 - need neutral component velocity > ion acoustic velocity

thermal interface

non-planar interface: Hinode spicules

• Ca II (radial filter to enhance spicules, M. Carlsson)

nb. stratified VAL chromosphere 1.5Mm only

spicules are produced by the chromosphere

non-planar interface: transition region-corona

- Feldman and colleag
 - different morpholog
 - TR thermally, mag
 - radiating entity = "

Mg I

Dowdy et al. (1986)

- Mixed polarity within network
 boundaries
- tries to explain "UFS"
- indeed these are thermally and magnetically separate entities

Questions: stability; footpoint magnetic fields; fate of downward conductive energy flux,...

Judge & Centeno (2008)

- VAULT Lα data vs.
 KPNO magnetic data
 - supplemented by Hinode SP vector polarimetry
- Prompted by Patsourakos et al (2007)
 - We noted something "odd" about proposed cool loops
 - large-scale alignment of L α threads

Patsourakos et al:

KPVT+POTL FIELDS+VAULT active network

Potential fields:

Black=low loops (h<5Mm) Gray= higher Non potential fields are generally higher

Stability requires that higher loops be hot

Most $L\alpha$ emission originates from the base of hot, coronal loops

Unresolved mixed polarity fields don't work. $L\alpha$ emission forms above h=0.8 Mm. Loops with footpoints separated by ≤ 1 " cannot reach these heights

Judge (2008) ApJL 683, 87-90: is there a simple explanation for the network transition region without appealing to cool loops?

"spicule" → cross field diffusion → TR radiation

Results: model L*α* ~0.1x observed using only local coronal heat

calculations with different coronal n, T: non-linear relationship between $L\alpha$ and coronal emission

Judge (2008)

- chromosphere supplies the (neutral) mass, corona the energy
 - "UFS" in this new picture is thermally connected to the corona
 - calculations for L α are promising, (also L β , He I 584)
- cross-field diffusion of neutrals might solve the 40+ yr problem of energy balance in extended structures in the lower TR
- needed
 - 2D calculations including field-aligned conduction and dynamics
 - observations of the chromosphere/corona interface in relation to magnetic field

chromosphere as the coronal base

the need for sub-arcsec imaging spectroscopy/ spectropolarimetry at the coronal base

- to map low β magnetic structure
 - ≤ 1 " angular resolution
 - ≥ 30 "×30" FOV
- to get dynamics
 - < 30s (spicules..)
- ground-based:
 - spectropolarimetry
 - Ca II, <mark>He I</mark>, H I,...
 - chromosphere only
- space (UV)
 - spectroscopy
 - chrom+TR+corona

nlff field extrapolation (Schrijver et al 2008)

new chromospheric **B** constraints (including e.g., just fibrils) can provide boundary conditions compatible with the calculations

To understand the corona we must study what is under Gold's line

- understand mass, momentum, free energy transport across chromosphere
 - single fluid MHD OK?
 - obtain much better boundary conditions on the corona
 - magnetic
 - thermodynamic
 - d ground+space data required

