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old vs. new perspectives 
magnetic interface
thermal interface

re-visiting some  physical issues



the chromosphere 

• stratified: spans 9 pressure scale heights
• requires 30-100x as much power as the corona
• usually contains plasma =1 surface
• is the lower boundary for the corona

– modulates flow of mass, momentum, energy and 
magnetic field into the corona

– implicit mass reservoir in coronal loop scaling laws
• yet 

– “chromosphere Hinode” search reveals 1/3 of 
“corona Hinode” publications

– chromosphere is an “ignore-o-sphere”?
– “too complicated”?



Example of “old” perspectives

SKYLAB data - VAL thermal models
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Recent(!) example of “old” perspectives

nlff field extrapolation (Schrijver et al 2008)

Hinode SP photospheric vector polarimetry, no 
chromospheric data (nb. Low & Flyer 2007)

red:
current



New perspectives: DOT and TRACE

9 Jul 2005 (A.G. de Wijn, R. J. Rutten)

photosphere
chromosphere
corona



magnetic interface



Magnetism and the solar atmosphere

• measure B where possible
• high plasma conductivity- 

“trace field lines” from 
photosphere to corona

• TRACE & other missions 
failed to do this

• why?- chromosphere

magnetic elements + 
reverse granulation

upper
chromosphere

upper
chromosphere

upper
chromosphere
upper
chromosphere

lower corona

De Pontieu et al. 1999
“moss”



Gold (1964)
• consider potential 

and f-f fields in 
upper half

• the electro-
dynamics of the 
chromosphere is 
critical to the 
supply of 
magnetic free 
energy into the 
corona.

• traditionally it is 
treated as in the 
figure



magnetic interface

observations:

an example



Small AR, pores



Small AR, pores: closer view



Chromosphere as seen with IBIS

• Ca II 854.2 nm
• samples many pressure 

scale heights

• base of corona is very 
different from 
photosphere

G. Cauzzi et al 2008, A+A



Small AR, pores: high resoution

photosphere and chromosphere

detailed study of IBIS data:  G. Cauzzi et al 2008, A+A



Differences between potential 

and constant α photospheric fields

• IBIS morphology⇒ transverse 
fields differ by ~20-40G

• Hinode 630.2 sensitivity BT(app) 
Lites et al (2008) ApJ 672, 1237
– 40 Mx cm-2 px-1 (normal map)
– 20 Mx cm-2 px-1 (deep map)

• Hinode can study photospheric vs 
chromospheric electrical currents, 
forced ➔ force free transition! 

• Total ÷ potential energy:
– 2 (chromosphere)
– 5-10 (corona)



Hale 1908: 100 years on

Inspiration for 
much work
generically 
called 
“chromospheric 
fine structure”



magnetic interface

physical considerations



Note: twist/ electrical currents can be easier to

detect in the chromosphere!

• IBIS again:  clear Bφ ⇒ jz

• Hinode rotating spicules
• ang. mom. conservation around tubes
• Knölker et. al. (1988)- tube 

stability requires rotating flow

• Parker (1974): Bφ/Bz increases with z



Chromosphere vs. photosphere 

as the coronal boundary
• chromosphere spans 9 scale heights
• ⇒ chromosphere usually contains β=1 surface

– j×B→ β B2/2µ above β=1     j⊥  → small
• partial ionizn⇒ 3-fluid frictional dissipation, heating

– Qfr =  j2/σ + (ξn j×B - G)2/αn,                    G =  ξn ∇p - ∇pn

– “ambipolar diffusion”/star formation (1950s Schlüter, Cowling)
• case G = 0 ⇒ “Cowling conductivity” σ⊥* (Arber & cohorts)

– Qfr =  jǁ2/σ   +  j⊥2/σ⊥*         σ /σ⊥*= 1 + 2 ξn ϖeτe ϖiτi >>1  
–   ⇒ dissipation of j⊥.        Explains why IBIS nearly f-f? 

• NOTE: σ⊥*  is some steps removed from σ (kinetic theory)
– case G  ≠ 0:  σ⊥* incorrect!
– one must simultaneously determine the nature of j⊥ (cf. E-region 

electrojet) from the dynamics



Chromosphere tends to “filter out” j⊥ : coronal 

base magnetic field → force-free

• Braginskii (1965): certain 
motions (G...) dissipate j⊥ 

– Alfvén, fast modes, dynamic 
situations where                          
∇p - ρg + j×B ≠ 0

• Not slow modes, slow 
dynamics (cf. Goodman 2000)

• So, at coronal lower boundary, 
chromosphere makes:
– j⊥∼0;  j×B∼0
– weaker Alfvén/fast modes 
– curl B = αB: α(r) → constant?
–            (Parker current sheets..)

Flux emergence: Arber, Haynes & 
Leake (2007) based upon Cowlingʼs 
conductivity (G=0):

...radical effect on flux 
emergence process



thermal interface



The problem- observations

• Feldman and colleagues (1983-)
– different morphology 104 -106 K, other properties
– TR thermally, magnetically isolated from the corona
– radiating entity = “unresolved fine structures”



Dowdy et al. (1986) 

• Mixed polarity 
within network 
boundaries

• tries to explain 
“UFS”

• indeed these are 
thermally and 
magnetically 
separate entities



Depontieu et al 2003:  TRACE/SST data

Yet... 

Significant correlations 
exist between the H 
chromospheric intensity 
and the low corona



Questions concerning cool loops

• Cool loops are considered by most a viable 
explanation, but

• where does the 106 erg cm-2 s-1 conductive 
flux go?

• Is it merely a coincidence that the lower TR 
radiates about 106 erg cm-2 s-1?

• Why should the cool loop distribution make the 
upper (conductive) and lower (cool loop) TR be 
correlated, at least on scales > a few Mm?

• are they stable (Cally & Robb 1991)?
• where are the tell-tale magnetic footpoints?
• ...



Judge & Centeno (2008)

• VAULT L data vs. 
KPNO magnetic data
– supplemented by 

Hinode SP vector 
polarimetry

• Prompted by 
Patsourakos et al 
(2007)
– We noted something 

“odd” about 
proposed cool loops

– large-scale alignment 
of L threads

Patsourakos et al:



KPVT+POTL FIELDS+VAULT

 active network
Black=low-lying loops (h<5Mm)
Gray= long

Stability requires that low- lying loops are 
possibly cool, but higher loops must be hot

Most L emission originates from the base 
of hot, coronal loops

Some may arise from cool loops, but not 
commonly in active network 

Cannot appeal to “unresolved (salt
+pepper)fields”- L emission forms above 
h=0.8 Mm.  “Loops” with footpoints 
separated by 1” can’t reach these heights



Spicules, fibrils..

• base of the corona is a 
non-planar thermal 
boundary 

• e.g., DOT H (Rutten 
2007) clockwise 0, -0.4, 
-0.6,-0.8 Å:

consider α in 
curl B = αB for photosphere
and coronal base



Hinode spicules

• Ca II (radial filter to enhance spicules, M. Carlsson)

stratified VAL
chromosphere
1.5Mm only

spicules arise
from within
the chromo-
sphere



Judge (2008) ApJL 683, 87-90

“spicule” ➜ cross field diffusion➜ TR radiation



Results: model L ~0.1x observed 

using only local coronal heat
1D 3-fluid 
calculation 
of cross-field 
diffusion 
from a cool 
flux tube into 
coronal 
plasma

no field 
aligned 
conduction

calculations with different coronal n,T: non-linear 
relationship between  L and coronal emission



Judge (2008)

• calculations for L are promising, (also L, He I 584)
– this is the hardest line to explain, others may follow?

• cross-field diffusion of neutrals might solve the 40+ yr problem 
of energy balance in extended structures in the lower TR

• chromosphere supplies the mass, corona the energy 
– cool loops don’t explain active network (Judge & Centeno 2008) 
– “UFS” in this new picture is thermally connected to the corona

• needed
– 2D calculations including field-aligned conduction and dynamics
– observations of the chromosphere/corona interface in relation to 

magnetic field



Conclusions
• the magnetic chromosphere remains poorly understood
• the Sun undergoes the awkward transition from forced β>1 to  force-

free β<1 there:  j×B → 0 at the coronal base
• magnetic free energy → chromospheric heat and radiation

– dissipation of j⊥: j×B → 0,
–  α(r) → ? at the coronal base: Parker’s current sheets
– observed chromospheric losses might arise from j⊥.E? (friction)

• spicules/fibrils+neutral diffusion+coronal heat finally explains the 
transition region? 

• meaningful photos./chromos. polarimetry is here and is needed to 
– understand basic MHD physics (e.g. Pietarila & colleagues)
– understand magnetism at the coronal base (e.g. Wiegelmann, Schrijver)

•  3-fluid MHD models are needed to assess how chromospheric processes  
influence the coronal base conditions (e.g., validity of Cowling’s σ⊥* )



To understand the corona we must understand what is under 
Gold’s line... is single-fluid MHD adequate?


