

The photosphere/corona interface: new perspectives

Philip Judge + R. Centeno, M. Kubo, B. Lites, S. McIntosh, A. G. de Wijn, HAO; G. Cauzzi, K. Reardon, Arcetri; A. Tritschler, H. Uitenbroek NSO

re-visiting some physical issues

old vs. new perspectives magnetic interface thermal interface

PLATE X

FIG. 1.—SUN-SPOT AND HYDROGEN (Ha) FLOCCULI 1908, May 29, 4^h 26^m P. M. Scale: Sun's Diameter = 0.3 Meter

The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation. An Equal Opportunity/Affirmative Action Employer.

September 2008

the chromosphere

- stratified: spans 9 pressure scale heights
- requires 30-100x as much power as the corona
- usually contains plasma β =1 surface
- is the lower boundary for the corona
 - modulates flow of mass, momentum, energy and magnetic field into the corona
 - implicit mass reservoir in coronal loop scaling laws
- yet
 - "chromosphere Hinode" search reveals 1/3 of
 "corona Hinode" publications
 - chromosphere is an "ignore-o-sphere"?
 - "too complicated"?

Example of "old" perspectives SKYLAB data - VAL thermal models

1973 JULY 8

CI Continuum (λ =104.4nm)

Lyman Alpha Wing (λ=121.1nm)

FIG. 6.—Skylab spectroheliograms of two 5' \times 5' areas of the solar surface, at wavelengths 104.4 and 74 nm (*above*) and wavelengths 121.1 and 90.7 nm (*below*).

VERNAZZA et al. (see page 647)

Lyman Continuum (λ = 90.7 nm)

m (g cm⁻²)

QUIET SUN EUV BRIGHTNESS COMPONENTS

Heroic reference work of vital importance, 1981

Recent(!) example of "old" perspectives nlff field extrapolation (Schrijver et al 2008)

Hinode SP photospheric vector polarimetry, no chromospheric data (nb. Low & Flyer 2007)

New perspectives: DOT and TRACE 9 Jul 2005 (A.G. de Wijn, R. J. Rutten)

photosphere chromosphere corona

magnetic interface

Magnetism and the solar atmosphere

- measure **B** where possible lacksquare
- high plasma conductivitylacksquare"trace field lines" from photosphere to corona
- TRACE & other missions failed to do this

"moss"

• why?- chromosphere

Gold (1964)

- consider potential and f-f fields in upper half
- the electrodynamics of the chromosphere is critical to the supply of magnetic free energy into the corona.
- traditionally it is treated as in the figure

FIGURE 44-2. Magnetic field in a turbulent conducting medium. The fluid pressure is assumed large compared with magnetic forces below the dividing plane and small above it.

magnetic interface observations: an example

Small AR, pores

Small AR, pores: closer view

Chromosphere as seen with IBIS

- Ca II 854.2 nm
- samples many pressure scale heights

 base of corona is very different from photosphere

G. Cauzzi et al 2008, A+A

Small AR, pores: high resoution photosphere and chromosphere

detailed study of IBIS data: G. Cauzzi et al 2008, A+A

Differences between potential and constant α photospheric fields

- IBIS morphology⇒ transverse fields differ by ~20-40G
- Hinode 630.2 sensitivity *B_T*(app) Lites et al (2008) ApJ 672, 1237
 - 40 Mx cm⁻² px⁻¹ (normal map)
 - 20 Mx cm⁻² px⁻¹ (deep map)
- Hinode can study photospheric vs chromospheric electrical currents, forced → force free transition!
- Total ÷ potential energy:
 - 2 (chromosphere)
 - 5-10 (corona)

Hale 1908: 100 years on

PLATE X

FIG. 1.—SUN-SPOT AND HYDROGEN ($H\alpha$) FLOCCULI 1908, May 29, 4^h 26^m P. M. Scale: Sun's Diameter = 0.3 Meter Inspiration for much work generically called "chromospheric fine structure"

magnetic interface physical considerations

Note: twist/ electrical currents can be easier to detect in the chromosphere!

- IBIS again: clear $B_{\varphi} \Rightarrow j_z$
- Hinode rotating spicules
- ang. mom. conservation around tubes
- Knölker et. al. (1988)- tube stability requires rotating flow

• Parker (1974): B_{φ}/B_z increases with z

DYNAMICAL PROPERTIES OF MAGNETIC FIELD

Chromosphere vs. photosphere as the coronal boundary

- chromosphere spans 9 scale heights
- \Rightarrow chromosphere usually contains $\beta=1$ surface

 $- |\mathbf{j} \times \mathbf{B}| \rightarrow \beta B^2/2\mu \text{ above } \beta = 1 \quad \mathbf{j}_{\perp} \rightarrow \mathbf{small}$

• partial ionizⁿ \Rightarrow 3-fluid frictional dissipation, heating

 $- Q_{\rm fr} = j^2/\sigma + (\xi_n \mathbf{j} \times \mathbf{B} - \mathbf{G})^2/\alpha_n, \qquad \mathbf{G} = \xi_n \nabla p - \nabla p_n$

- "ambipolar diffusion"/star formation (1950s Schlüter, Cowling)
- case $G = 0 \Rightarrow$ "Cowling conductivity" σ_{\perp}^* (Arber & cohorts)
 - $\ Q_{fr} = \ j_{\text{II}}^2 / \sigma \ + \ j_{\perp}^2 / \sigma_{\perp}^* \qquad \sigma \ / \sigma_{\perp}^* = 1 \ + \ 2 \ \xi_n \ \varpi_e \tau_e \ \varpi_i \tau_i \! > \! > \! 1$
 - \Rightarrow dissipation of \mathbf{j}_{\perp} . Explains why IBIS nearly f-f?
- NOTE: σ_{\perp}^* is some steps removed from σ (kinetic theory)
 - case $G \neq 0$: σ_{\perp}^* incorrect!
 - one must simultaneously determine the nature of \mathbf{j}_{\perp} (cf. E-region electroiet) from the dynamics

Chromosphere tends to "filter out" j⊥: coronal base magnetic field → force-free

- Braginskii (1965): certain motions (G...) dissipate \mathbf{j}_{\perp}
 - Alfvén, fast modes, dynamic situations where $\nabla p \rho g + j \times B \neq 0$
- Not slow modes, slow
 dynamics (cf. Goodman 2000) -
- So, at coronal lower boundary, chromosphere makes:
 - j⊥~0; j×B~0
 - weaker Alfvén/fast modes
 - curl B = α B: α (r) \rightarrow constant?

(Parker current sheets..)

Flux emergence: Arber, Haynes & Leake (2007) based upon Cowling's conductivity (**G=0)**:

Plot of the magnitude of j_\perp as a function of height along the line x=y=0 for all three resistivity models at t=160 .

emergence process

thermal interface

The problem- observations

ullet

Dowdy et al. (1986)

- Mixed polarity within network
 boundaries
- tries to explain "UFS"
- indeed these are thermally and magnetically separate entities

Depontieu et al 2003: TRACE/SST data

CORRELATIONS BETWEEN CHROMOSPHERIC AND TR EMISSION

Yet...

Significant correlations exist between the H α chromospheric intensity and the low corona

Questions concerning cool loops

- Cool loops are considered by most a viable explanation, but
- where does the 10⁶ erg cm⁻² s⁻¹ conductive flux go?
- Is it merely a coincidence that the lower TR radiates about 10⁶ erg cm⁻² s⁻¹?
- Why should the cool loop distribution make the upper (conductive) and lower (cool loop) TR be correlated, at least on scales > a few Mm?
- are they stable (Cally & Robb 1991)?
- where are the tell-tale magnetic footpoints?

•

Judge & Centeno (2008)

- VAULT Lα data vs.
 KPNO magnetic data
 - supplemented by Hinode SP vector polarimetry
- Prompted by Patsourakos et al (2007)
 - We noted something "odd" about proposed cool loops
 - large-scale alignment of L α threads

Patsourakos et al:

KPVT+POTL FIELDS+VAULT active network

Black=low-lying loops (h<5Mm) Gray= long

Stability requires that low-lying loops are possibly cool, but higher loops must be hot

Most $L\alpha$ emission originates from the base of hot, coronal loops

Some may arise from cool loops, but not commonly in active network

Cannot appeal to "unresolved (salt +pepper)fields"- $L\alpha$ emission forms above h=0.8 Mm. "Loops" with footpoints separated by 1" can't reach these heights

Spicules, fibrils...

- base of the corona is a non-planar thermal boundary
- e.g., DOT Hα (Rutten 2007) clockwise 0, -0.4, -0.6,-0.8 Å:

consider α in curl $\mathbf{B} = \alpha \mathbf{B}$ for photosphere and coronal base

Hinode spicules

• Ca II (radial filter to enhance spicules, M. Carlsson)

spicules *arise from within* the chromosphere

stratified VAL chromosphere 1.5Mm only

Judge (2008) ApJL 683, 87-90 "spicule" → cross field diffusion→ TR radiation

Results: model L*α* ~0.1x observed using only local coronal heat

calculations with different coronal n, T: non-linear relationship between $L\alpha$ and coronal emission

Judge (2008)

- calculations for L α are promising, (also L β , He I 584)
 - this is the hardest line to explain, others may follow?
- cross-field diffusion of neutrals might solve the 40+ yr problem of energy balance in extended structures in the lower TR
- chromosphere supplies the mass, corona the energy
 - cool loops don't explain active network (Judge & Centeno 2008)
 - "UFS" in this new picture is thermally connected to the corona
- needed
 - 2D calculations including field-aligned conduction and dynamics
 - observations of the chromosphere/corona interface in relation to magnetic field

Conclusions

- the magnetic chromosphere remains poorly understood
- the Sun undergoes the awkward transition from forced $\beta > 1$ to force-free $\beta < 1$ there: $j \times B \rightarrow 0$ at the coronal base
- magnetic free energy \rightarrow chromospheric heat and radiation
 - dissipation of $\mathbf{j}_{\perp}: \mathbf{j} \times \mathbf{B} \to \mathbf{0}$,
 - $\alpha(\mathbf{r}) \rightarrow$? at the coronal base: Parker's current sheets
 - observed chromospheric losses might arise from j_{\perp} .E? (friction)
- spicules/fibrils+neutral diffusion+coronal heat finally explains the transition region?
- meaningful photos./chromos. polarimetry is here and is needed to

 understand basic MHD physics (e.g. Pietarila & colleagues)
 - understand magnetism at the coronal base (e.g. Wiegelmann, Schrijver)
- 3-fluid MHD models are needed to assess how chromospheric processes influence the coronal base conditions (e.g., validity of Cowling's σ_{\perp}^*)

To understand the corona we must understand what is under Gold's line... *is single-fluid MHD adequate*?

FIGURE 44-2. Magnetic field in a turbulent conducting medium. The fluid pressure is assumed large compared with magnetic forces below the dividing plane and small above it.

