

The chromosphere 2008

Philip Judge, HAO, NCAR

FIG. 1.—SUN-SPOT AND HYDROGEN ($H\alpha$) FLOCCULI 1908, May 29, 4^h 26^m p. m. Scale: Sun's Diameter = 0.3 Meter

"By 1908, Azef was playing a double role of a revolutionary assassin and police spy who received 1000 rubles a month from the police"

"later ...Azef lived with a singer and worked as a corset salesman and stock speculator"

The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation. An Equal Opportunity/Affirmative Action Employer.

December 2008

the chromosphere

primary observational characteristics

- eclipse H α emission above the photosphere 1800s
- Ca II network emission, plages 1900s
 - correlated with photospheric magnetic fields 1950s
- UV radiation 1950s
- fine structure (H α network, fibrils, spicules) Secchi 1870s,...
- dynamics (spicules, oscillations,...) 1960s

Why is the Sun obliged to do this?

the Sun

- no magnetic field:
 - convection, turbulence, atmospheric waves
 - global (p-) modes
 - weak, stochastic
 chromosphere
 - no corona (almost)
- with magnetic field:
 -?

what is supergranulation? →observationally driven problem

THE SUN, SHOWING THE CALCIUM FLOCCULI (H2 LEVEL). 1903, AUGUST 12, 8^b 52^m. C. S. T. (Scale of Original Negative.)

(See p. 41.)

MHD

Electric currents VUNES

Hot

 λ/Δ λ \geq 40,000

chromospheres

 present in all stars with surface convection 1960s

the Sun is not alone

FIG. 4.—The mean chromospheric flux $\langle F'_{HK} \rangle = \sigma T_{eff}^4 \langle R'_{HK} \rangle$ vs. rotation period P_{obs} . Labels give 100(B-V)

the chromosphere: derived physical characteristics

- stratified: spans 9 pressure scale heights
- requires 30-100x as much power as the corona
- usually contains plasma $\beta=1$ surface
- Progress
 - internetwork dynamics
 - type I spicules identified, explained
- Open questions
 - magnetic heating, force balance, spicule (type II)
 - connections chrom.-TR-corona

SKYLAB data - VAL thermal models, average stratification

Heroic reference work of vital importance, 1981

1.1.1.00

 10^{-3}

10-4

m (g cm⁻²)

 10^{-5}

1.1.1.1.000

 10^{-2}

10

some observations

SST data: Berger et al 2004 A&A

- photosphere plage
 - A. G-band
 - B. Ca II H 3Å, $\lambda/\Delta \lambda \approx 1,300$
 - C. magnetogram
 - D. Ni I doppler
- fluted sheets, tubes rare
- more time for wave/mag. field interactions

Hinode photosphere

G band

Calcium II

Hinode disk chromosphere

- Ca II H 2.2Å, $\lambda/\Delta \lambda \approx 1,800$
- need $\lambda/\Delta \lambda \ge 18,000$ (Reardon et al 2008)
- oh dear...

Hinode limb chromosphere

• Ca II (radial filter to enhance spicules, M. Carlsson)

spicules *arise from within* the chromosphere

stratified VAL chromosphere 1.5Mm only

fast dynamics (on disk see McIntosh & de Pontieu)

Ca II H 2.2Å, $\lambda/\Delta \lambda \approx 1,800$

dynamics: ground-based Ca II

- Lites, Rutten, Kalkofen 1993
 - Ca II H $\lambda/\Delta \lambda \approx 200,000$
 - CI: 3min
 - NB: \geq 5min: *slow*
- wave crossing time for NB - $l/c_s \approx 5 (l/3 \text{Mm}) \text{ min}$
- *NB* structure lives >> this
- (sub)sonic motions
- magnetostatic equilibrium not unreasonable

dynamics: IBIS Ca II IR triplet QS chromosphere

- Cauzzi et al 2007
- $\lambda/\Delta \lambda \approx 100,000$
- line core
- network vs internetwork

Photosphere-chromosphere-transition region

- Unpublished ASP/TRACE/SOHO data (JOP72)
 - Judge, Lites, Tarbell
 - unique slit alignments
- dynamics

Photosphere-chromosphere-transition region

- Unpublished ASP/TRACE/SOHO data (JOP72)
 - Judge, Lites, Tarbell
 - unique slit alignment

Velocity item3_980516 O VI 1038.00 γ =0.5

some thoughts on magnetic heating

steady currents

- Navarro 2005(SPINOR)
- small spot
- consistency checkscredible
- heating:steady current systems not dominant
- j×B ≠0

150

100

50

150

100

50

10

Mm

15

gravity waves and magnetic network

- IBIS obs.
 +simulations(Straus et al. 2008)
 - source of energy for NW chromosphere?
- But
 - NW requires a few ×10⁴ W m⁻² (VAL F, P)
 - average gravity wave 5×10³ W m⁻² (VAL A,B)
 - if important, gravity waves must dump a lot of energy in NW
 - coupling efficiency?

exploring MHD wave heating (single fluid)

- large literature
- little direct observational support
 - (high frequencies look like "turbulence")
- typically (e.g. Hasan & Van Ballegooijen 2008)
 - MHD waves in/around field concentrations (tubes, sheets)
 - high frequencies (40 mHz: shorter simulation times)
 - *dissipation* is via conversion to slow modes which shock

chromosphere as a partially ionized plasma

- partial ionizⁿ \Rightarrow 3-fluid *frictional dissipation, heating*
- efficient damping by ion-neutral collisions
- Kinetic theory (Braginskii 1965)

 $- Q_{fr} = \mathbf{j} \cdot \mathbf{E} = \mathbf{j}^2 / \mathbf{\sigma} + (\xi_n \mathbf{j} \times \mathbf{B} - \mathbf{G})^2 / \alpha_{n,} \qquad \mathbf{G} = \xi_n \nabla p - \nabla p_n$

- "ambipolar diffusion"/star formation (1950s Schlüter, Cowling)
- $\mathbf{G} = \mathbf{0} \Rightarrow$ "Cowling conductivity" σ_{\perp}^*
 - $-Q_{\mathrm{fr}} = j_{\mathrm{II}}^{2}/\sigma + j_{\perp}^{2}/\sigma_{\perp}^{*} \qquad \sigma/\sigma_{\perp}^{*} = 1 + 2 \xi_{\mathrm{n}} \omega_{\mathrm{e}} \tau_{\mathrm{e}} \omega_{\mathrm{i}} \tau_{\mathrm{i}} \qquad >>1$
 - $\rightarrow rapid dissipation of \mathbf{j}_{\perp}$
 - Goodman & colleagues:
 - Arber & colleagues:

wave heating

flux emergence

Chromospheric dissipation of $j \bot$

- Braginskii (1965): certain motions (G...) dissipate j_{\perp}
 - Alfvén, fast modes, dynamic situations where $\nabla p \rho g + j \times B \neq 0$
- Not slow modes, slow
 dynamics (cf. Goodman 2000) -
- So, at coronal lower boundary, chromosphere makes:
 - j⊥~0; j×B~0
 - weaker Alfvén/fast modes

Flux emergence: Arber, Haynes & Leake (2007) based upon Cowling's conductivity (**G=0)**:

Plot of the magnitude of j_{\perp} as a function of height along the line x=y=0 for all three resistivity models at t=160 .

emergence process

chromosphere as a partially ionized plasma II

- σ_{\perp}^* is some steps removed from σ (kinetic theory)
 - case $\mathbf{G} \neq \mathbf{0}$: σ_{\perp}^* incorrect!
 - one must simultaneously determine the nature of \mathbf{j}_{\perp} (cf. E-region electrojet) from the dynamics
- Fontenla (2005, 2008 A+A)
 - for length scales >100 km (few mHz waves),
 - $-Q_{fr} = \mathbf{j}.\mathbf{E}$ too small, invokes instability (Farley-Buneman)
 - need neutral component velocity > ion acoustic velocity

Conundrum

force and energy imbalance?

- VAL models require high *P* where *B* is high (marked "*h*")
- Magnetostatic models require low *P* where *B* is high
- proposals:
 - Wilson depression
 - fast heating, cooling
 - z-pinch
- Is there a problem?
 - better observations

isobars

Solanki, Steiner & Uitenbroek (1991)

- photosphere in NB lower than CI ("Wilson *anxiety*", ΔZ)
- $dP/dz = -\rho g$ invariant with $z \rightarrow z + constant$
- move entire NB atmosphere ↓
 - satisfy horizontal pressure equilibrium
 - get same vertical emergent intensity

Problems?

- VAL F/A requires >2 scale heights *anxiety*,
- *but model F* is from 5"x5" observations
- probably >3? scale heights needed, "depression"
- is NB observed to be "deeper" than CI?
- (consistent with 3D MHD models?)

Increase NB brightness, but without increasing pressure

- Radiative cooling time 90 sec (Anderson & Athay 1989)
- perturbations of *P* travel ~10 km/s (high β fast+slow modes)
 - − NB→CI travel time \ge 300 sec
 - probably refracted downwards (nb WKB?)
- shocks present in simulations (Schaffenberger et al 2005)
- so, bursts of heat on time scales << 300 sec lead to pressure pulses which may refract and *will radiate energy before arriving at NB/CI boundary*
- no direct observational evidence for or against, but
 this may also be a possible thermal source for *spicules*

Lorentz force: z-pinch?

- Steiner et al (1986), twisted flux tubes
 - in asymptotic region (merged field)
 - Instability when $B_{\varphi}/B_z > \sqrt{f}$, f = photos. fill factor of B
 - $\sqrt{f} \approx 0.1$ in quiet Sun
 - radial tube expansion by 10: $B_{\varphi}/B_z = 1$ - may be sufficient?
 - dynamics after instability not known
- possibly a magnetic source for spicules II

chromosphere - corona thermal interface

The problem- observations

ullet

Dowdy et al. (1986)

- Mixed polarity within network
 boundaries
- tries to explain "UFS"
- indeed these are thermally and magnetically separate entities

Depontieu et al 2003: TRACE/SST data

CORRELATIONS BETWEEN CHROMOSPHERIC AND TR EMISSION

Yet...

Significant correlations exist between the H α chromospheric intensity and the low corona

Questions concerning cool loops

- Cool loops are considered by most a viable explanation, but
- where does the 10⁶ erg cm⁻² s⁻¹ conductive flux go?
- Is it merely a coincidence that the lower TR radiates about 10⁶ erg cm⁻² s⁻¹?
- Why should the cool loop distribution make the upper (conductive) and lower (cool loop) TR be correlated, at least on scales > a few Mm?
- are they stable (Cally & Robb 1991)?
- where are the tell-tale magnetic footpoints?

•

Judge & Centeno (2008)

- VAULT Lα data vs.
 KPNO magnetic data
 - supplemented by Hinode SP vector polarimetry
- Prompted by Patsourakos et al (2007)
 - We noted something "odd" about proposed cool loops
 - large-scale alignment of L α threads

Patsourakos et al:

KPVT+POTL FIELDS+VAULT active network

Black=low-lying loops (h<5Mm) Gray= long

Stability requires that low-lying loops are possibly cool, but higher loops must be hot

Most $L\alpha$ emission originates from the base of hot, coronal loops

Some may arise from cool loops, but not commonly in active network

Cannot appeal to "unresolved (salt +pepper)fields"- $L\alpha$ emission forms above h=0.8 Mm. "Loops" with footpoints separated by 1" can't reach these heights

Spicules, fibrils...

- base of the corona is a non-planar thermal boundary
- e.g., DOT Hα (Rutten 2007) clockwise 0, -0.4, -0.6,-0.8 Å:

consider α in curl $\mathbf{B} = \alpha \mathbf{B}$ for photosphere and coronal base

Judge (2008) ApJL 683, 87-90 "spicule" → cross field diffusion→ TR radiation

5 moment equations of motion including diffusive fluxes

 $\omega \tau \gg$ 1: across the field, can ignore heat flux, thermal force, diffusion of ions:

$$\frac{\partial n_s}{\partial t} + \frac{\partial}{\partial x} \{ n_s u_s + d_s^n \} = \frac{\delta n_s}{\delta t},\tag{1}$$

$$m_s \frac{\partial n_s u_s}{\partial t} + \frac{\partial}{\partial x} \left\{ m_s n_s u_s^2 + p_s + d_s^M \right\} + F = \frac{\delta M_s}{\delta t}, \quad (2)$$

$$\frac{\partial E_s}{\partial t} + \frac{\partial}{\partial x} \left\{ u(E_s + p_s) + d_s^E \right\} = \frac{\delta E_s}{\delta t} + Q - L.$$
(3)

$$d_s^n \approx -\frac{1}{3}\lambda_s \frac{\partial}{\partial x} \{n_s(x)\overline{v}_s(x)\}$$
 (diffusive fluxes)

- when d_s^i , $\frac{\delta}{\delta t}$, Q L are 0, => Euler for s
- $\lambda = \text{mean free path}, \ \overline{v}_s(x) = \sqrt{\frac{8kT_s}{\pi m_s}}, \ E_s = \frac{3}{2}n_skT_s + \frac{1}{2}m_sn_su_s^2, \ p_s = n_skT_s$

• $\frac{\delta X_s}{\delta t}$, non-linear collisions for species s (Schunk 1977).

• Solve for n_s, u_s, T_s from a given initial state.

Results: model L*α* ~0.1x observed using only local coronal heat

calculations with different coronal n, T: non-linear relationship between $L\alpha$ and coronal emission

Judge (2008)

- calculations for L α are promising, (also L β , He I 584)
 - this is the hardest line to explain, others may follow?
- cross-field diffusion of neutrals might solve the 40+ yr problem of energy balance in extended structures in the lower TR
- chromosphere supplies the mass, corona the energy
 - cool loops don't explain active network (Judge & Centeno 2008)
 - "UFS" in this new picture is thermally connected to the corona
- needed
 - 2D calculations including field-aligned conduction and dynamics
 - observations of the chromosphere/corona interface in relation to magnetic field

chromosphere as the coronal base

To understand the corona we must understand what is under Gold's line... *is single-fluid MHD adequate*?

FIGURE 44-2. Magnetic field in a turbulent conducting medium. The fluid pressure is assumed large compared with magnetic forces below the dividing plane and small above it.

DOT and TRACE: 9 Jul 2005 (A.G. de Wijn, R. J. Rutten)

- photosphere chromosphere corona
- coronal structure already present in the chromosphere

Chromosphere vs. photosphere as the coronal boundary

- is the lower boundary for the corona
 - modulates flow of mass, momentum, energy and magnetic field into the corona
 - implicit mass reservoir in coronal loop scaling laws
- $\mathbf{j}_{\perp} \rightarrow \mathbf{small}$ at coronal base, for 2 reasons
 - force balance traversing 9 scale heights
 - $|\mathbf{j} \times \mathbf{B}| \rightarrow \beta B^2/2\mu$ above $\beta=1$
 - frictional dissipation of $\,j_{\perp}$
- $\alpha(\mathbf{r}) \rightarrow \mathbf{?}$ at the coronal base: coronal current sheets (Parker)

magnetic interface observations: an example

Small AR, pores

Small AR, pores: closer view

Chromosphere as seen with IBIS

- Ca II 854.2 nm
- samples many pressure scale heights

 base of corona is very different from photosphere

G. Cauzzi et al 2008, A+A

Small AR, pores: high resoution photosphere and chromosphere

detailed study of IBIS data: G. Cauzzi et al 2008, A+A

Differences between potential and constant α photospheric fields

- IBIS morphology⇒ transverse fields differ by ~20-40G
- Hinode 630.2 sensitivity *B_T*(app) Lites et al (2008) ApJ 672, 1237
 - 40 Mx cm⁻² px⁻¹ (normal map)
 - 20 Mx cm⁻² px⁻¹ (deep map)
- Hinode can study photospheric vs chromospheric electrical currents, forced → force free transition!
- Total ÷ potential energy:
 - 2 (chromosphere)
 - 5-10 (corona)

the future: imaging spectroscopy/ spectropolarimetry

twist/electrical currents revealed in the chromosphere!

- IBIS again: clear $B_{\varphi} \Rightarrow j_z$
- Hinode rotating spicules

• Parker (1974): $- B_{\varphi}/B_z$ increases with z

IBIS Fe I 6302, Ca II IR IQUV, H α I

- joint IBIS/ Hinode/Trace
- 20 May 2008
- pore/network

Conclusions

- the magnetic chromosphere remains poorly understood
- the Sun undergoes the awkward transition from forced $\beta > 1$ to force-free $\beta < 1$ there: $j \times B \rightarrow 0$ at the coronal base
- magnetic free energy \rightarrow chromospheric, heat, radiation, spicules? - dissipation of $j_{\perp}: j \times B \rightarrow 0$,
 - $\alpha(\mathbf{r}) \rightarrow ?$ at the coronal base: Parker's current sheets
 - observed chromospheric losses might arise from j_{\perp} .E? (friction)
- spicules/fibrils+neutral diffusion+coronal heat
 - finally explains the lower transition region?
- **meaningful** photos./chromos. polarimetry is here and is needed to
 - understand basic MHD physics (e.g. Pietarila & colleagues)
 - understand magnetism at the coronal base (e.g. Wiegelmann, Schrijver)
- 3-fluid MHD models are needed to assess chromospheric processes and hence coronal base conditions

