What are the mechanical energy needs of the chromosphere?

Philip Judge HAO, NCAR

January 2010

How chromospheric heating requirements are estimated Models must be used, because chrom radn ~ 10⁻⁵ photosphere @ similar wavelengths • VAL, Anderson & Athay: - semi-empirical 1D models based on - Crude (5x5" or worse) observations - NLTE + Hydrostatic eqm, yields • F ~ 1.4 10⁷ erg/cm /s (model C*), - From lowest few scale heights - 30-100x corona

Network model problems

Non-unique *T*(*m*) (VAL3C vs SRPM...)

- 1D models have
 - (nearly) identical photospheres to internetwork
 - no "hot walls" so
 - no hot radiation at the base

Lower radiative boundary condition is incorrect

Flying Dutchmen...

- Uitenbroek- chromospheric lines re-radiate some hot wall photospheric radiation
 - Is the lower network chromosphere simply this?
 - What about thermal sub-mm continuum data?
 - Can hot wall radiation make a chromosphere-like temperature increase without mechanical heating?
- Rutten (2009) most network emissivity in Na I, Ca II 8542, Ca II H ... stems from photospheric ... view-pipe photon escape ... not much [mechanical] heating is seen in these images
 - Do Ca II 8542 and H/K cores form too high?

Further questions

- Has the mechanical energy needed for the chromosphere been overestimated?
- If so
 - By how much?
 - Is the upper chromosphere the only place where heating is common?
- cf. Rutten, Uitenbroek
 - Spectrum formation

Radiative equilibrium 2D/3D

- Spruit 1976 LTE+diffn. approx
- Steiner 1990 LTE+scattering
 - Lines+continuum
 - ODFs with assumptions
- Skartlien 2000 Multigroup
 - LTE opacity
 - S=thermal+coherent scattering
 - lines+continuum
- Others (CO5BOLD,..) grey
- Not clear what detailed treatments will give, but coherent scattering restricts photon transfer

Steiner 1990

Observational tests (sub-arcsecond)

If radiative heating/scattering, then

- photosphere/low chromosphere brightnesses must be correlated
- Spatio-temporal variations must be in phase
- Presence of thermal emission (mm) from low chromosphere implies heating
- Low chromosphere must be diffuse relative to the photosphere

Hinode/IBIS Judge et al, in prep.)

Hinode

Magnetogram G-band

IBIS

Ca II 8542 chromosphere wing-core

Hinode/IBIS Judge et al, in prep.)

Hinode

Magnetogram G-band

IBIS

Ca II 8542 chromosphere wing-core

Ca II 8542

Core is clearly uncorrelated with photospheric hot walls

=> non-radiative heating dominates in the upper chromosphere

Schmidt (Judge et al, in prep.)

Ca II H chromosphere

Schmidt (Judge et al, in prep.)

Ca II H Photospherechromosphere

Schmidt (Judge et al, in prep.)

Carlsson et al 2004

Observed mu=0.6

G band photosphere

Conclusions

- Models are needed to study chromospheric energetics
- 1D models so far yield best (only?) estimates of heating
- In network, plage, 1D models will overestimate mechanical heating, as hot wall radiation can heat/scatter from low chromosphere. Not inconsistent with:
 - Plausible physical arguments
 - Existing 2D calculations (coherent scattering)
 - High resolution observations of Ca II lines
- Worth a 2D magnetostatic RE calculation
- Is the low chromosphere radiatively heated? (cf. Carlsson-Stein internetwork)