Signatures of electric currents in forbidden coronal emission lines (theoretical)

Philip Judge with B.C. Low and R. Casini

High Altitude Observatory, NCAR, Boulder CO, USA

The problem

- measurements of coronal magnetic fields are needed to study storage and release of energy:
 - basic MHD of the corona (structure, stability, causes of dynamics, flares)
 - 2. origins of space weather
 - 3. role of large scale coronal magnetic fields in the solar cycle
 - 4. coronal heating?
- the time is ripe to exploit
 - 1. forbidden (M1) coronal lines (1960s: Charvin, Harvey)
 - 2. permitted prominence lines (1970s Leroy) -not discussed here

Goals

- predict polarization signatures of coronal current systems of physical interest
 - with/without sufficient energy to drive CMEs
- 2. examine the "response" of Stokes data to simple current properties
- 3. determine what is important to try to measure (QU vs. V)
- 4. determine the best coronal lines/instrumentation to constrain the currents

Specific problems

- linear polarization (Q,U) is determined by anisotropic radiation
- circular polarization (V) is determined by weak-field Zeeman effect and anisotropic radiation, thus
- signatures of the coronal magnetic field are weak, $I: P: V \approx 1: (10^{-3} - 10^{-1}): 10^{-4}$
- ambiguities abound...
 - 1. 90° ambiguity in field azimuth (Q,U)
 - 2. line-of-sight integration problems
 - 3. so, vector fields not retrievable
- models needed

Van Vleck effect

 $\mathbf{L} \cos \vartheta_B = \hat{\mathbf{g}} \cdot \hat{\mathbf{B}}$

- 90° change of direction of pol. vector, along
 - "nulls" lying at loci where $3\cos^2 \vartheta_B 1 = 0$

Our approach

- inverse methodology is intractable w/o stereographic polarization measurements
- => forward modelling
 - use a simple, (almost) analytical model with adjustable axisymmetric currents, code of Casini & Judge 1999
 - adopt a simple thermal structure
 - spherically symmetric, hydrostatic isothermal plasma
 - "maximizes" thermal line-of-sight integration problems
 - Iook for signatures of the current system in synthetic IQUV data of forbidden (M1) lines

The model

Low, B. C., Fong, B., and Fan, Y.: 2003, *"The Mass of a Solar Quiescent Prominence"*, *Astrophys. J.* **594**, 1060

- fi gure shows poloidal lines of force
- dipole + equatorial current sheet, axisymmetric
- radial fi eld = dipolar fi eld (see next slide)
- magnetostatic: prominence weight ($\approx 10^{17}$ g) = upward Lorentz force, this is the source of magnetic free energy
- current sheet $r = 1r_{\odot}$ to $1.12r_{\odot}$ = prominence sheet wrapped around the Sun
 - "simplest prominence model in spherical geometry"
- tilted axis of symmetry (S. pole towards earth) otherwise zero V

Quantitatively...

$$A_{\text{sheet}} = B_{\odot} r_{\odot}^2 (A_3 - A_I),$$

where A_3 is the third spheroidal harmonic function and A_I is its image potential, such that $A_I(r_{\odot}) = A_3(r_{\odot})$ and A_I is everywhere potential in $r > r_{\odot}$. Since

$$\mathbf{B} = (B_r, B_\theta, B_\phi) = \frac{1}{rsin\theta} \left(\frac{\partial A}{r\partial \theta}, -\frac{\partial A}{\partial r}, 0 \right),$$

the current sheet contributes zero radial field component at $r = r_{\odot}$. Finally,

$$A = A_{\rm dip} + \gamma A_{\rm sheet}, \ A_{\rm dip} = B_{\odot} r_{\odot}^3 \frac{\sin^2 \theta}{r}.$$

As γ is varied, the coronal magnetic fi eld and embedded prominence sheet change, but the radial component of the surface magnetic fi eld $B_r(r = r_{\odot})$ remains unchanged.

=> current sheet is "invisible" to surface radial field

Atomic models

- Fe XIII, Fe XIV, Fe X, Si IX, Si X, CHIANTI, ≈ 30 levels (most $\Delta n = 0$ transitions)
- more complete than earlier theoretical work (Sahal-Brechot 1977, House 1977)
- => more depolarizing collisions
- e^- collisions using multipolar (E1, E2), strong coupling approx. (M1, other)

reduced to 2- or 3- levels, empirically increasing collisions to match P & I \pm several %

Fe XIII 1075nm P vs γ

- remarkable response of linear polarization to γ both *P* and azimuth, Van Vleck
- P/I (not shown) ≈ 0.04 near 1.07 r_{\odot} , 1/3 earlier work.
- Resolves earlier discrepancy w/o appealing to inhomogeneties in ρ or **B** (Arnaud & Newkirk 1987).

Fe XIII 1075nm $V~{\rm vs}~\gamma$

- "torus" of strong fi eld surrounding the current sheet in V
- changes sign just above the current sheet
- with P, gives "unique signatures" of the current sheet?

Fe XIII

- magnetograph formula pretty good!
- I(1079.8)/I(1074.7) ≈ 1/2

- $P(1079.8)/P(1074.7) \approx 10^{-2}$
- broadly consistent with earlier work (Sahal-Brechot 1977)

Fe XIV (green line) vs. Fe XIII: P

- P/I (Fe XIV) \approx 1/5 P/I (Fe XIII)
- $P/I \approx 0.01 < earlier work- again resolves discrepancy (Arnaud 1982)$
- qualitatively consistent with early work (Sahal-Brechot 1974)

Fe XIV (green line) vs. Fe XIII: V

as expected V/I (Fe XIV) pprox 1/2 V/I (Fe XIII)

Si IX vs. Fe XIII: P

- Large C_{2*} , small $A_{21}, B_{21}\overline{J}$, => P/I \ll P/I (Fe XIII)
- $P/I \approx 0.0005$ near $1.07 r_{\odot}!$
 - => Poor choice if linear polarization deemed important.

Si IX vs. Fe XIII: V

- as expected V/I (Si IX) pprox 3 V/I (Fe XIII)
- highest V/I of all potentially interesting lines

Si X 1.43 μ vs. Fe XIII: P

- I(Si X) ≈ I(Fe XIII 1074)
- P/I (Si X) 0.4 P/I (Fe XIII)

Si X 1.43 μ vs. Fe XIII: V

- V/I (Si X) 0.8 P/I (Fe XIII)
- promising!

Summary

- Small atomic models can account for depolarization effects of missing higher levels.
- Current data bring computed/observed P/I to agreement
- Linear polarization is "easily measured" and is critical- strong response to the presence of electrical currents
- M1 lines can discriminate configurations with/without sufficient energy to open field lines and launch CME ($\gamma = 0.042$ vs 0.021)
- Fe XIII 1074.7 and 1079.8 nm lines are prime choices
- Si X 1430 nm has similar QUV to Fe XIII 1074 nm, but can can useful near sunspot minimum (higher abundance at low T)
- Si IX 3943.6 nm has best V/I, but very small P/I => less attractive

COMP coronal data: azimuth

COMP coronal data: P/I

