

On the solar transition region

Philip Judge, HAO

- The problem: history, status
- VAULT L α , magnetic fields
 - Judge & Centeno 2008
- A simple explanation
 - Judge 2008
- Conclusions

The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation. An Equal Opportunity/Affirmative Action Employer.

May 8 2008

The problem- observations

- Feldman and colleagues (1983-)
 - different morphology $10^4 10^6$ K, other properties
 - TR thermally, magnetically isolated from the corona
 - radiating entity = "unresolved fine structures"

Mg IX 368Å

Intensity image of a typical TR line, QS

Feldman et al 2001

SUMER 300x300"

no obvious relationship to the corona...

Feldman concludes that the TR is thermally and magnetically isolated...

duration: 51 s, $\Delta t = 17$ s, 4 frames

- temporal variations apparent even in brief limb sequence
- Ly α jets appear much like H α DFs
- difference: the former bright against dark cell interior whereas the later dark against a bright plage
- we choose to call these jets

Ly α dynamic fibrils (DFs)

The theoretical problem

- Field-aligned conduction models fail $< 10^5 \text{ K}$
 - Insufficient radiation: Athay 1966, Gabriel 1976, Jordan 1980
 - TR plasma cannot radiate 10⁶ erg cm⁻² s⁻¹ downward conductive flux
 - Solution? Fontenla et al: move cool atoms along field lines by diffusion where they radiate. Cally- turbulent heat transport
 - does not account for UFS
- "Cool loops"
 - Rabin & Moore (1984), Antiochos & Noci (1986)...
 - basically extended chromospheres near 10⁵ K => low-lying (usually short) loops, <10Mm say
 - Dowdy et al (1986) mixed small-scale polarities within NW boundaries
 - Cally & Robb (1991)- stability?

Gabriel 1976, Athay 1981,1982

FIG. 5.—Comparison of empirical emission measures (dashed lines) to computed emission measures for different values of T_s (solid lines, labeled in units of 10⁵ K) for class 1 models.

Dowdy et al. (1986)

- Mixed polarity within network
 boundaries
- tries to explain "UFS"
- indeed these are thermally and magnetically separate entities

Current status

- Cool loops are considered a viable explanation
- But,
 - where does the 10^6 erg cm⁻² s⁻¹ conductive flux go?
 - Is it a coincidence that the lower TR radiates about 10⁶ erg cm⁻² s⁻¹?
 - Why should the cool loop distribution be such as to make the upper (conductive) and lower (cool loop)
 TR be correlated, at least on scales > a few Mm?
 - are they stable (Cally & Robb 1991)?
 - can we find the tell-tale magnetic footpoints?

Judge & Centeno (2008)

- VAULT data vs. KPNO magnetic data
 - supplemented by Hinode SP vector polarimetry
- Prompted by Patsourakos et al (2007)
 - We noted something "odd" about proposed cool loops
 - large-scale alignment of $L\alpha$ threads

Patsourakos et al:

Magnetic fields and L α

KPVT+POTL FIELDS+VAULT

- Black=low-lying loops (h<5Mm) Gray= long
- Stability requires that low-lying are possibly cool higher loops must be hot
- Most $L\alpha$ emission originates from the base of hot, coronal loops
- some may arise from cool loops, but not commonly in active network.

MDI vs KPVT vs HINODE

Table 1.	Sensitivity	of MDI,	KPVT	and	Hinode-SP	longitudinal	magnetograms
----------	-------------	---------	------	-----	-----------	--------------	--------------

Instrument/mode	noise per pixel	pixel size	noise in flux
	Mx cm ⁻²	arc seconds	units of 10 ¹⁵ Mx
MDI/full disk KPVT/synoptic Hinode SP/normal map (Kitt Peak 40 channel magnetograph Livingston and Harvey 1971)	17 2.8 3 0.4	1″.984 × 1″.984 1″.148 × 1″.148 0″.164 × 0″.164 †	$350 \\ 19 \\ 0.42 \\ \approx 13$

Note. — 1" on the Sun corresponds to 725 km (Allen 1973). [†]Seeing limited, here we use an effective pixel size of 2.5×2.5 " corresponding to half of the quoted resolution of 5".

Hinode & flux missing from KPVT

small ARs observed by Hinode SP

0.164" pixels, 0.33" resolution

KPVT only misses 25% of pixels containing magnetic flux seen by Hinode SP, even though it is 45x less sensitive

Strong flux concentrations - long loops again - low-lying (possibly cool) loops cannot penetrate into bright core concentrations

weak concentrations (quiet Sun), cool loops indeed possible.

Irrelevance of fields on scales below 0.8Mm for L α

- Sources on scales L can reach heights typically L
- L α must form above $\tau_{cont}=1$, i.e. 0.8Mm
 - because of simple stratification
 - (VAL/FAL places L α at about 2Mm)
- Hinode has resolved down to ~ 0.24 Mm
- KPVT and Hinode have sufficient resolution and sensitivity to discount smaller cool loops
 - all important sources of potential cool loops are already in the data
- In strong flux concentrations (e.g., seen by VAULT) cool loops are no longer a credible option

If not cool loops then what? Judge (2008)

- Prompted by
 - VAULT analysis
 - Corona/chromosphere interface at high resolution (Berger et al 1999) ->
 - spicules ("type II")
 - He I EUV problem (Pietarila & Judge 2004
- Simple, cross-field diffusion
 - cool tubes projecting into the corona
 - no **j***x***B** force on neutrals

Berger et al.

Spicules, fibrils..

- Hinode data (radial filter to enhance spicules, M. Carlsson)
- base of the corona (coronal hole)- vertical thermal boundaries

spicules *arise from within* the chromo- – sphere

stratified VAL chromosphere 1.5Mm only

Initial conditions

Initial corona				
T_h	Κ	10^{6}		
n_h	${ m cm^{-3}}$	$8.0 imes 10^8$		01
n_p, n_e	${ m cm^{-3}}$	$4.0 imes 10^8$		Classi
p	${ m cm^{-3}}$	$1.1 imes 10^{-1}$	co	rona
В	G	10		1 1:00
eta		$2.8 imes 10^{-2}$	neut	rai aiffusi
ω_p	s^{-1}	$9.6 imes10^4$		
r_{gyro}	\mathbf{km}	$1.5 imes 10^{-3}$		
$ au_{pp}$	S	1.6	$n_p^{-1}T^{+3/2}$	6
$\omega_p au_{pp}$		$1.5 imes 10^5$	-	
$ au_{ee}$	S	$5.0 imes10^{-2}$	$n_e^{-1}T^{3/2}$	
chromospheric	tube			(
T_{c}	Κ	$8.0 imes10^3$		
\overline{v}	${\rm km}~{\rm s}^{-1}$	13	$T^{1/2}$	
n_c	${ m cm^{-3}}$	10^{11}		
$ au_{nn}$	S	$1.4 imes 10^{-2}$	$n_n^{-1}T^{-1/2}$	
-		-		

Kinetic processes

hot protons impa	acting hyd	lrogen atoms			
$\overline{ au_{pn}(CT)}$	S	1.0×10^{-2}	$n_p^{-1}T^{-1/2}$	" CT " = charge transfer	
H atom mfp	\mathbf{km}	$6.5 imes10^{-2}$	n_p^{-1}		
cool hydrogen atoms impacting protons					
$ au_{np}(CT)$	S	$8.0 imes 10^{-5}$	$n_n^{-1}T^{-1/2}$		
proton mfp	\mathbf{km}	$5.8 imes10^{-3}$	n_n^{-1}		
$\omega_p au_{np}$		7.7			
hot electrons imp	pacting H	atoms			
$ au_{12}$	S	$9.5 imes10^{-2}$	$n_e^{-1}T_e^{-1/2}e^{10.2e/kT_e}$	excitation of $n = 2$ level	
$ au_{1k}$	s	$8.2 imes10^{-2}$	$n_e^{-1} T_e^{-1/2} e^{13.6e/kT_e}$	ionization	
$ au_{k1}$	s	$4.0 imes 10^5$	$n_e^{-1} T_e^{+1/2}$	radiative recombination	

Kinetic results (t< 0.1s,say)

initial mass flux
$$\frac{1}{4}n_c\overline{v}_c \sim 2 \times 10^{16}$$
 particles s⁻¹ cm⁻²,
electrons lose energy $\varepsilon = 5n_h(I+E)e$ per unit volume at the rate
 $\frac{\varepsilon}{t} \gtrsim \frac{5n_h(I+E)e}{7\tau_{1\kappa}} \approx 0.13$ erg cm⁻³ s⁻¹,

L\$\alpha\$ flux
$$f \approx \frac{3}{7} \varepsilon 3 v_c^{diff} \approx 5.6 \times 10^3 \text{ erg cm}^{-2} \text{ s}^{-1}$$

-factor 100-300 lower than VAULT thread values, 30 smaller than average network.

This uses only *local* thermal energy, and does not include non-linear dynamics.

5 moment equations of motion including diffusive fluxes

 $\omega \tau \gg$ 1: across the field, can ignore heat flux, thermal force, diffusion of ions:

$$\frac{\partial n_s}{\partial t} + \frac{\partial}{\partial x} \{ n_s u_s + d_s^n \} = \frac{\delta n_s}{\delta t},\tag{1}$$

$$m_s \frac{\partial n_s u_s}{\partial t} + \frac{\partial}{\partial x} \left\{ m_s n_s u_s^2 + p_s + d_s^M \right\} + F = \frac{\delta M_s}{\delta t}, \quad (2)$$

$$\frac{\partial E_s}{\partial t} + \frac{\partial}{\partial x} \left\{ u(E_s + p_s) + d_s^E \right\} = \frac{\delta E_s}{\delta t} + Q - L.$$
(3)

$$d_s^n \approx -\frac{1}{3}\lambda_s \frac{\partial}{\partial x} \{n_s(x)\overline{v}_s(x)\}$$
 (diffusive fluxes)

- when d_s^i , $\frac{\delta}{\delta t}$, Q L are 0, => Euler for s
- $\lambda = \text{mean free path}, \ \overline{v}_s(x) = \sqrt{\frac{8kT_s}{\pi m_s}}, \ E_s = \frac{3}{2}n_skT_s + \frac{1}{2}m_sn_su_s^2, \ p_s = n_skT_s$

• $\frac{\delta X_s}{\delta t}$, non-linear collisions for species s (Schunk 1977).

• Solve for n_s, u_s, T_s from a given initial state.

Results

non-linear

10x L α from (linear) kinetic estimate

local energy only- no field aligned conduction

calculations with different coronal n, T: non-linear relationship between $L\alpha$ and coronal emission

VAULT+TRACE

Speculation: field-aligned conduction, subsequent dynamics

- Spicules launched from chromosphere
- speed ~ 10 km/s?
- diffusion speed 0.8km/s
- Diffusion front makes angle 0.8/10 radians wrt field lines
- entire length of the spicule is exposed to the field-aligned heat flux
- spicule sheath is cooler, denser than initial corona
 - radiates in trace species (C III,...)?
 - pressure gradients insufficient to support additional mass
 - downflows?

Conclusions

- A simple model might explain a long-standing problem of energy balance in extended structures in the lower TR
- missing ingredient is cross-field diffusion of neutrals
- chromosphere supplies the mass, corona the energy.
 - no need for cool loops and they don't explain active network anyway (Judge & Centeno 2008)
 - Feldman's "UFS" in this model is thermally connected
- Calculations for L α are promising, (also L β , He I 584)
 - this is the hardest line to explain, others may follow?
- Future
 - 2D calculations including field-aligned conduction and dynamics are needed
 - more observations of the chromosphere/corona interface

